Bidimensional Interpolation Operators of Finite Element Type and Degree of Exactness Two
نویسندگان
چکیده
For a given arbitrary triangulation of R, we construct an interpolating operator which is exact for the polynomials in two variables of total degree ≤ 2. This operator is local, in the sense that the information around an interpolation node are taken from a small region around this point. We study the remainder of the interpolation formula. MSC 2000: 41A63, 41A05, 41A25, 41A80, 47A57.
منابع مشابه
Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملInterpolation and quasi - interpolation in h - and hp - version nite element spaces ( extended version )
Interpolation operators map a function u to an element Iu of a finite element space. Unlike more general approximation operators, interpolants are defined locally. Estimates of the interpolation error, i.e., the difference u− Iu, are of utmost importance in numerical analysis. These estimates depend on the size of the finite elements, the polynomial degree employed, and the regularity of u. In ...
متن کاملBernstein-type operators on a triangle with one curved side
We construct Bernstein-type operators on a triangle with one curved side. We study univariate operators, their product and Boolean sum, as well as their interpolation properties, the order of accuracy (degree of exactness, precision set) and the remainder of the corresponding approximation formulas. We also give some illustrative examples. Mathematics Subject Classification (2010). Primary 41A3...
متن کاملCover interpolation functions and h-enrichment in finite element method
This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005